!pip install numpy matplotlib ipython librosa ipywidgets
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import Audio, display
import librosa
import librosa.display
# Define parameters
sample_rate = 44100 # samples per second
duration = 1.0 # seconds
t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
# Function to generate a pure sine wave
def generate_sine_wave(freq, amplitude=1.0):
return amplitude * np.sin(2 * np.pi * freq * t)
# Function to generate a sawtooth wave
def generate_sawtooth_wave(freq, amplitude=1.0):
return amplitude * 2 * (freq * t - np.floor(0.5 + freq * t))
# Function to generate a square wave
def generate_square_wave(freq, amplitude=1.0):
return amplitude * np.sign(np.sin(2 * np.pi * freq * t))
# Function to generate a triangle wave
def generate_triangle_wave(freq, amplitude=1.0):
return amplitude * 2 * np.abs(2 * (freq * t - np.floor(0.5 + freq * t))) - 1
# Function to plot one period of a wave
def plot_one_period(wave_func, freq, title):
# Generate the wave
wave = wave_func(freq)
# Calculate the period in seconds
period = 1.0 / freq
# Calculate how many samples make up one period
samples_per_period = int(period * sample_rate)
# Plot one period
plt.figure(figsize=(10, 4))
plt.plot(t[:samples_per_period], wave[:samples_per_period])
plt.title(f"One Period of {title} Wave at {freq} Hz")
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.grid(True)
plt.show()
# Return the full wave for audio playback
return wave
# Generate and plot different waveforms at the same frequency
freq = 440 # A4 note
print("In music, 'color' or 'timbre' refers to the quality of a sound that distinguishes different types of sound production.")
print("It's what makes a piano sound different from a violin, even when playing the same note.")
print("This is primarily determined by the harmonic content of the sound - the presence and strength of overtones.")
print("\nBelow are examples of different waveforms playing the same note (A4 = 440 Hz) but with different timbres:")
# Sine wave - pure tone with no harmonics
sine_wave = plot_one_period(generate_sine_wave, freq, "Sine")
print("Sine Wave: The purest tone with no harmonics, sounds smooth and clear.")
display(Audio(sine_wave, rate=sample_rate))
# Sawtooth wave - rich in harmonics
sawtooth_wave = plot_one_period(generate_sawtooth_wave, freq, "Sawtooth")
print("Sawtooth Wave: Rich in harmonics, sounds bright and buzzy like brass instruments.")
display(Audio(sawtooth_wave, rate=sample_rate))
# Square wave - contains only odd harmonics
square_wave = plot_one_period(generate_square_wave, freq, "Square")
print("Square Wave: Contains only odd harmonics, sounds hollow like a clarinet.")
display(Audio(square_wave, rate=sample_rate))
# Triangle wave - contains odd harmonics that decrease more rapidly
triangle_wave = plot_one_period(generate_triangle_wave, freq, "Triangle")
print("Triangle Wave: Contains odd harmonics that decrease more rapidly, sounds softer than square wave.")
display(Audio(triangle_wave, rate=sample_rate))
# Visualize the frequency spectrum (harmonics) of each waveform
plt.figure(figsize=(12, 10))
# Function to plot the spectrum
def plot_spectrum(wave, title, position):
plt.subplot(4, 1, position)
D = librosa.amplitude_to_db(np.abs(librosa.stft(wave)), ref=np.max)
librosa.display.specshow(D, y_axis='log', x_axis='time', sr=sample_rate)
plt.title(f"Frequency Spectrum of {title} Wave")
plt.colorbar(format='%+2.0f dB')
plot_spectrum(sine_wave, "Sine", 1)
plot_spectrum(sawtooth_wave, "Sawtooth", 2)
plot_spectrum(square_wave, "Square", 3)
plot_spectrum(triangle_wave, "Triangle", 4)
plt.tight_layout()
plt.show()
print("\nThe 'color' in music comes from these different harmonic structures.")
print("Real instruments produce complex waveforms with unique harmonic signatures.")
print("This is why a piano and a guitar sound different even when playing the same note.")
# Let's explore some key musical concepts and how they appear in waveforms
# 1. Amplitude (Volume/Loudness)
print("### 1. Amplitude")
print("Amplitude represents the volume or loudness of a sound. In the waveform, it's shown by the height of the wave from the center line.")
print("- **Higher amplitude** = louder sound")
print("- **Lower amplitude** = quieter sound")
# Create two identical notes with different amplitudes
freq = 440 # A4 note
quiet_sound = generate_sine_wave(freq, amplitude=0.3)
loud_sound = generate_sine_wave(freq, amplitude=0.9)
# Plot amplitude comparison
plt.figure(figsize=(15, 3))
plt.subplot(1, 2, 1)
plt.plot(t[:1000], quiet_sound[:1000])
plt.title("Quiet Sound (Low Amplitude)")
plt.ylim(-1, 1)
plt.subplot(1, 2, 2)
plt.plot(t[:1000], loud_sound[:1000])
plt.title("Loud Sound (High Amplitude)")
plt.ylim(-1, 1)
plt.suptitle("1. Amplitude Comparison", fontsize=16)
plt.tight_layout()
plt.show()
# Play the amplitude comparison sounds
print("Quiet Sound:")
display(Audio(quiet_sound, rate=sample_rate))
print("Loud Sound:")
display(Audio(loud_sound, rate=sample_rate))
# 2. Frequency (Pitch)
print("### 2. Frequency")
print("Frequency determines the pitch of a sound, measured in Hertz (Hz).")
print("- **Higher frequency** = higher pitch (more wave cycles per second)")
print("- **Lower frequency** = lower pitch (fewer wave cycles per second)")
print("- Each octave represents a doubling/halving of frequency")
# Create two notes with the same amplitude but different frequencies
low_note = generate_sine_wave(220) # A3 (one octave lower)
high_note = generate_sine_wave(880) # A5 (one octave higher)
# Plot frequency comparison
plt.figure(figsize=(15, 3))
plt.subplot(1, 2, 1)
plt.plot(t[:1000], low_note[:1000])
plt.title("Low Note (220 Hz)")
plt.ylim(-1, 1)
plt.subplot(1, 2, 2)
plt.plot(t[:1000], high_note[:1000])
plt.title("High Note (880 Hz)")
plt.ylim(-1, 1)
plt.suptitle("2. Frequency Comparison", fontsize=16)
plt.tight_layout()
plt.show()
# Play the frequency comparison sounds
print("Low Note (220 Hz):")
display(Audio(low_note, rate=sample_rate))
print("High Note (880 Hz):")
display(Audio(high_note, rate=sample_rate))
# 3. Harmonics (Overtones)
print("### 3. Harmonics (Overtones)")
print("Harmonics are additional frequencies that occur naturally in most musical sounds.")
print("- **Pure tone** = single frequency (sine wave)")
print("- **Complex tone** = fundamental frequency plus harmonics")
print("- Harmonics give instruments their distinctive timbre or \"tone color\"")
print("- The pattern and strength of harmonics is why a piano and violin sound different even playing the same note")
# Create a pure tone vs a tone with harmonics
pure_tone = generate_sine_wave(440)
# Create a complex tone with fundamental and harmonics
complex_tone = generate_sine_wave(440, 0.8) + \
generate_sine_wave(880, 0.4) + \
generate_sine_wave(1320, 0.2) + \
generate_sine_wave(1760, 0.1)
complex_tone = complex_tone / np.max(np.abs(complex_tone)) # Normalize
# Plot harmonics comparison
plt.figure(figsize=(15, 3))
plt.subplot(1, 2, 1)
plt.plot(t[:1000], pure_tone[:1000])
plt.title("Pure Tone (Single Frequency)")
plt.ylim(-1, 1)
plt.subplot(1, 2, 2)
plt.plot(t[:1000], complex_tone[:1000])
plt.title("Complex Tone (With Harmonics)")
plt.ylim(-1, 1)
plt.suptitle("3. Harmonics Comparison", fontsize=16)
plt.tight_layout()
plt.show()
# Play the harmonics comparison sounds
print("Pure Tone:")
display(Audio(pure_tone, rate=sample_rate))
print("Complex Tone with Harmonics:")
display(Audio(complex_tone, rate=sample_rate))
# 4. Envelope (ADSR: Attack, Decay, Sustain, Release)
print("### 4. Envelope (ADSR)")
print("The envelope describes how a sound changes in amplitude over time:")
print("- **Attack**: How quickly the sound reaches full volume")
print("- **Decay**: The initial fall in volume after the attack")
print("- **Sustain**: The steady volume level maintained while a note is held")
print("- **Release**: How quickly the sound fades after the note ends")
print("")
print("Different instruments have characteristic envelopes:")
print("- Piano: Fast attack, no sustain (immediate decay)")
print("- Violin: Variable attack, can sustain indefinitely while bowing")
print("- Percussion: Very fast attack, short decay, no sustain")
# Use a lower frequency so we can see the actual wave in the envelope
freq = 100 # Very low frequency to see individual cycles
time_points = np.linspace(0, 1, len(t))
# Create an ADSR envelope
attack = 0.1
decay = 0.2
sustain_level = 0.7
release = 0.3
envelope = np.ones_like(time_points)
# Attack phase
attack_end = int(attack * len(time_points))
envelope[:attack_end] = np.linspace(0, 1, attack_end)
# Decay phase
decay_end = int((attack + decay) * len(time_points))
envelope[attack_end:decay_end] = np.linspace(1, sustain_level, decay_end - attack_end)
# Sustain phase
release_start = int((1 - release) * len(time_points))
# Release phase
envelope[release_start:] = np.linspace(sustain_level, 0, len(time_points) - release_start)
# Apply envelope to a tone
flat_tone = generate_sine_wave(freq)
shaped_tone = flat_tone * envelope
# Plot envelope comparison
plt.figure(figsize=(15, 9))
plt.subplot(3, 1, 1)
plt.plot(t, flat_tone)
plt.title("Original Tone (No Envelope)")
plt.ylim(-1, 1)
plt.subplot(3, 1, 2)
plt.plot(t, envelope)
plt.title("ADSR Envelope")
plt.ylim(0, 1.1)
plt.subplot(3, 1, 3)
plt.plot(t, shaped_tone)
plt.title("Shaped Tone (Original Wave × Envelope)")
plt.ylim(-1, 1)
plt.suptitle("4. Envelope Comparison", fontsize=16)
plt.tight_layout()
plt.show()
# Play the envelope comparison sounds
print("Flat Tone (No Envelope):")
display(Audio(flat_tone, rate=sample_rate))
print("Shaped Tone (With ADSR Envelope):")
display(Audio(shaped_tone, rate=sample_rate))
# Visualizing Waveforms of Different Instruments
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import Audio, display
import librosa.display
from scipy.signal import hilbert
from scipy.signal import savgol_filter # For smoothing envelopes
# Function to generate and analyze synthetic instrument waveforms
def analyze_synthetic_instrument(instrument_function, instrument_name, duration=2.0, sr=22050):
# Generate synthetic waveform
t = np.linspace(0, duration, int(sr * duration), endpoint=False)
y = instrument_function(t, sr)
# Plot the detailed views
plt.figure(figsize=(15, 4)) # Increased width by 25%
# Plot the waveform - show only first 0.1 seconds for better detail
plt.subplot(1, 3, 1)
# Only show first 0.1 seconds (or 10% of the signal if duration is very short)
display_samples = min(int(0.1 * sr), len(y) // 10)
librosa.display.waveshow(y[:display_samples], sr=sr)
plt.title(f'{instrument_name} Waveform (First 0.1s)')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
# Plot the spectrogram
plt.subplot(1, 3, 2)
D = librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max)
librosa.display.specshow(D, sr=sr, x_axis='time', y_axis='log')
plt.colorbar(format='%+2.0f dB')
plt.title(f'{instrument_name} Spectrogram')
# Plot the envelope with improved smoothing
plt.subplot(1, 3, 3)
envelope = np.abs(hilbert(y)) # Using scipy.signal.hilbert instead of librosa.hilbert
# Apply stronger smoothing to the envelope
window_length = min(501, len(envelope) // 5) # Larger window for smoother curve
if window_length % 2 == 0: # Window length must be odd
window_length += 1
smooth_envelope = savgol_filter(envelope, window_length, 3) # Savitzky-Golay filter
plt.plot(t, smooth_envelope)
plt.title(f'{instrument_name} Envelope (Smoothed)')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.tight_layout()
plt.show()
# Play the audio
print(f"Listen to the {instrument_name} sample:")
display(Audio(y, rate=sr))
print("\n")
# Synthetic instrument waveform generators
def piano_like(t, sr):
# Piano-like sound: rich harmonics with fast decay
fundamental = 440 # A4 note
harmonics = [1, 2, 3, 4, 5, 6]
strengths = [1.0, 0.5, 0.33, 0.25, 0.2, 0.16]
# Generate harmonics
y = np.zeros_like(t)
for h, s in zip(harmonics, strengths):
y += s * np.sin(2 * np.pi * fundamental * h * t)
# Apply piano-like envelope (fast attack, long decay)
envelope = np.exp(-5 * t)
return y * envelope
def violin_like(t, sr):
# Violin-like sound: odd harmonics with vibrato
fundamental = 440 # A4 note
harmonics = [1, 3, 5, 7]
strengths = [1.0, 0.4, 0.2, 0.1]
# Generate harmonics with vibrato
vibrato_rate = 5 # Hz
vibrato_depth = 5 # Hz
y = np.zeros_like(t)
for h, s in zip(harmonics, strengths):
# Add vibrato to the frequency
freq = fundamental * h + vibrato_depth * np.sin(2 * np.pi * vibrato_rate * t)
phase = 2 * np.pi * np.cumsum(freq) / sr
y += s * np.sin(phase)
# Apply violin-like envelope (slow attack, sustained)
attack = 0.1 * sr # 0.1 seconds
envelope = np.ones_like(t)
envelope[:int(attack)] = np.linspace(0, 1, int(attack))
envelope = envelope * np.exp(-0.5 * t)
return y * envelope / np.max(np.abs(y))
def guitar_like(t, sr):
# Guitar-like sound: rich harmonics with pluck
fundamental = 196 # G3 note
harmonics = [1, 2, 3, 4, 5, 6, 7, 8]
strengths = [1.0, 0.5, 0.33, 0.25, 0.2, 0.16, 0.14, 0.12]
# Generate harmonics
y = np.zeros_like(t)
for h, s in zip(harmonics, strengths):
y += s * np.sin(2 * np.pi * fundamental * h * t)
# Apply guitar-like envelope (fast attack, medium decay)
envelope = np.exp(-2 * t)
# Add a slight "pluck" at the beginning
pluck_duration = int(0.01 * sr) # 10ms
if pluck_duration > 0:
envelope[:pluck_duration] *= np.linspace(0, 1, pluck_duration)
return y * envelope
def flute_like(t, sr):
# Flute-like sound: fewer harmonics, airy quality
fundamental = 523.25 # C5 note
harmonics = [1, 2, 3]
strengths = [1.0, 0.1, 0.05]
# Generate harmonics
y = np.zeros_like(t)
for h, s in zip(harmonics, strengths):
y += s * np.sin(2 * np.pi * fundamental * h * t)
# Add some noise for the airy quality
noise = np.random.normal(0, 0.05, len(t))
y += noise
# Apply flute-like envelope (slow attack, sustained)
attack = 0.2 * sr # 0.2 seconds
envelope = np.ones_like(t)
envelope[:int(attack)] = np.linspace(0, 1, int(attack))
envelope = envelope * np.exp(-0.2 * t)
return y * envelope / np.max(np.abs(y))
def drum_like(t, sr):
# Drum-like sound: noise with fast decay
# Generate noise
y = np.random.normal(0, 1, len(t))
# Apply drum-like envelope (very fast attack, fast decay)
envelope = np.exp(-20 * t)
# Add a low-frequency component for the "thump"
thump = 0.8 * np.sin(2 * np.pi * 80 * t) * np.exp(-40 * t)
return (y * envelope + thump) / np.max(np.abs(y * envelope + thump))
# Dictionary of synthetic instrument functions
instrument_functions = {
"Piano": piano_like,
"Violin": violin_like,
"Guitar": guitar_like,
"Flute": flute_like,
"Drum Kit": drum_like
}
# Process each instrument
for instrument, func in instrument_functions.items():
print(f"## {instrument} ##")
analyze_synthetic_instrument(func, instrument)
# Define sample rate and time array for the drum sound
sr = 44100 # Sample rate in Hz
duration = 1.0 # Duration in seconds
t = np.linspace(0, duration, int(sr * duration), endpoint=False)
# Drum-like sound: noise with fast decay
# Generate noise
y = np.random.normal(0, 1, len(t))
# Apply drum-like envelope (very fast attack, fast decay)
envelope = np.exp(-20 * t)
# Add a low-frequency component for the "thump"
thump = 0.8 * np.sin(2 * np.pi * 80 * t) * np.exp(-40 * t)
# Plot the individual components
plt.figure(figsize=(15, 9))
plt.subplot(3, 1, 1)
plt.plot(t[:1000], y[:1000])
plt.title('Noise Component')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.subplot(3, 1, 2)
plt.plot(t[:1000], thump[:1000])
plt.title('Thump Component')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.subplot(3, 1, 3)
noise_with_envelope = y * envelope
plt.plot(t[:1000], noise_with_envelope[:1000])
plt.title('Noise with Envelope Applied')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.tight_layout()
plt.show()
# Now show the envelope separately
plt.figure(figsize=(15, 6))
plt.subplot(2, 1, 1)
plt.plot(t[:int(0.2*len(t))], envelope[:int(0.2*len(t))])
plt.title('Drum Envelope (First 20% of Duration)')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.ylim(0, 1.1)
plt.annotate('Rapid exponential decay', xy=(t[int(0.05*len(t))], envelope[int(0.05*len(t))]),
xytext=(t[int(0.1*len(t))], 0.8),
arrowprops=dict(facecolor='red', shrink=0.05))
plt.grid(True)
plt.subplot(2, 1, 2)
final_sound = (y * envelope + thump) / np.max(np.abs(y * envelope + thump))
plt.plot(t[:int(0.2*len(t))], final_sound[:int(0.2*len(t))])
plt.title('Final Drum Sound (First 20% of Duration)')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.tight_layout()
plt.show()
# Plot the full final drum sound
plt.figure(figsize=(10, 4))
final_sound = (y * envelope + thump) / np.max(np.abs(y * envelope + thump))
plt.plot(t, final_sound)
plt.title('Complete Drum Sound Waveform')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.show()
# Create the audio player widget that can be clicked to play the sound
from IPython.display import Audio, display
drum_audio = Audio(data=final_sound, rate=sr)
display(drum_audio)
import ipywidgets as widgets
from IPython.display import display, Audio
import numpy as np
import matplotlib.pyplot as plt
# Music theory section - showing scales and chords
def generate_note_frequency(note, octave=4):
"""Generate frequency for a given note and octave"""
notes = {'C': 0, 'C#': 1, 'D': 2, 'D#': 3, 'E': 4, 'F': 5,
'F#': 6, 'G': 7, 'G#': 8, 'A': 9, 'A#': 10, 'B': 11}
# A4 = 440Hz (MIDI note 69)
A4_FREQ = 440
A4_MIDI = 69
# Calculate MIDI note number
midi_note = 12 * (octave + 1) + notes[note]
# Calculate frequency
frequency = A4_FREQ * 2**((midi_note - A4_MIDI) / 12)
return frequency
def create_chord(root_note, chord_type='major', octave=4, duration=1.0, sr=44100):
"""Create a chord from a root note"""
t = np.linspace(0, duration, int(sr * duration), endpoint=False)
# Define intervals for common chord types
intervals = {
'major': [0, 4, 7], # Root, Major 3rd, Perfect 5th
'minor': [0, 3, 7], # Root, Minor 3rd, Perfect 5th
'diminished': [0, 3, 6], # Root, Minor 3rd, Diminished 5th
'augmented': [0, 4, 8], # Root, Major 3rd, Augmented 5th
'7th': [0, 4, 7, 10], # Root, Major 3rd, Perfect 5th, Minor 7th
'maj7': [0, 4, 7, 11], # Root, Major 3rd, Perfect 5th, Major 7th
}
# Generate frequencies for the chord
root_freq = generate_note_frequency(root_note, octave)
chord_freqs = [root_freq * 2**(interval/12) for interval in intervals[chord_type]]
# Create the chord sound (sum of sine waves)
chord = np.zeros_like(t)
individual_waves = []
for freq in chord_freqs:
wave = 0.5 * np.sin(2 * np.pi * freq * t)
individual_waves.append(wave)
chord += wave
# Normalize
chord = chord / np.max(np.abs(chord))
# Apply a simple envelope
envelope = np.exp(-3 * t)
chord = chord * envelope
# Apply envelope to individual waves too for visualization
individual_waves = [wave * envelope for wave in individual_waves]
return chord, individual_waves, t, chord_freqs
# Interactive chord player
@widgets.interact(
root_note=['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B'],
chord_type=['major', 'minor', 'diminished', 'augmented', '7th', 'maj7'],
octave=(2, 6, 1)
)
def play_chord(root_note='C', chord_type='major', octave=4):
chord, individual_waves, t, frequencies = create_chord(root_note, chord_type, octave)
# Display the chord's notes
intervals = {
'major': [0, 4, 7],
'minor': [0, 3, 7],
'diminished': [0, 3, 6],
'augmented': [0, 4, 8],
'7th': [0, 4, 7, 10],
'maj7': [0, 4, 7, 11],
}
notes = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B']
root_idx = notes.index(root_note)
chord_notes = [notes[(root_idx + interval) % 12] for interval in intervals[chord_type]]
print(f"{root_note} {chord_type}: {', '.join(chord_notes)}")
# Plot the waveforms
plt.figure(figsize=(15, 8))
# Plot individual note waveforms
num_notes = len(individual_waves)
for i, (wave, note, freq) in enumerate(zip(individual_waves, chord_notes, frequencies)):
plt.subplot(num_notes + 1, 1, i + 1)
# Only show first 0.1 seconds for better visualization
display_samples = int(0.1 * len(t))
plt.plot(t[:display_samples], wave[:display_samples])
plt.title(f'Note: {note} ({freq:.1f} Hz)')
plt.ylabel('Amplitude')
plt.grid(True)
# Plot combined chord waveform
plt.subplot(num_notes + 1, 1, num_notes + 1)
plt.plot(t[:display_samples], chord[:display_samples])
plt.title('Combined Chord Waveform')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.tight_layout()
plt.show()
return Audio(chord, rate=44100)
@widgets.interact(
fundamental=(110, 880, 10),
num_harmonics=(1, 8, 1),
attack=(0.01, 0.5, 0.01),
decay=(0.01, 1.0, 0.01),
sustain_level=(0.0, 1.0, 0.1),
release=(0.01, 2.0, 0.01)
)
def custom_instrument(fundamental=440, num_harmonics=3, attack=0.1, decay=0.2,
sustain_level=0.7, release=0.3):
"""Create a custom instrument with user-specified parameters"""
sr = 44100
duration = 2.0
t = np.linspace(0, duration, int(sr * duration), endpoint=False)
# Generate harmonics
y = np.zeros_like(t)
harmonics = []
plt.figure(figsize=(15, 9))
# Calculate harmonic strengths using exponential falloff
strengths = []
for i in range(1, num_harmonics + 1):
# Using exponential falloff
strength = 1.0 / (2 ** (i - 1))
strengths.append(strength)
harmonic = strength * np.sin(2 * np.pi * fundamental * i * t)
harmonics.append(harmonic)
y += harmonic
# Normalize
y = y / np.max(np.abs(y))
# Create ADSR envelope
envelope = np.ones_like(t)
attack_samples = int(attack * sr)
decay_samples = int(decay * sr)
release_samples = int(release * sr)
release_start = int(sr * (duration - release))
# Attack phase
if attack_samples > 0:
envelope[:attack_samples] = np.linspace(0, 1, attack_samples)
# Decay phase
if decay_samples > 0:
envelope[attack_samples:attack_samples+decay_samples] = np.linspace(1, sustain_level, decay_samples)
# Sustain phase (already set to sustain_level by decay)
envelope[attack_samples+decay_samples:release_start] = sustain_level
# Release phase
if release_samples > 0:
envelope[release_start:] = np.linspace(sustain_level, 0, len(t) - release_start)
# Apply envelope
y = y * envelope
# Plot harmonics
plt.subplot(5, 1, 1)
display_samples = 1000 # Show first 1000 samples for better visualization
for i, harmonic in enumerate(harmonics):
plt.plot(t[:display_samples], harmonic[:display_samples],
label=f'Harmonic {i+1} ({fundamental*(i+1):.1f} Hz)')
plt.title('Individual Harmonics')
plt.grid(True)
plt.legend()
# Plot harmonic spectrum right after harmonics
plt.subplot(5, 1, 2)
frequencies = [fundamental * i for i in range(1, num_harmonics + 1)]
plt.bar(frequencies, strengths, width=fundamental*0.3)
plt.title('Harmonic Spectrum')
plt.xlabel('Frequency (Hz)')
plt.ylabel('Amplitude')
plt.grid(True)
# Plot combined waveform before envelope
plt.subplot(5, 1, 3)
combined = np.sum(harmonics, axis=0)
combined = combined / np.max(np.abs(combined)) # Normalize
plt.plot(t[:display_samples], combined[:display_samples])
plt.title('Combined Waveform (Before Envelope)')
plt.grid(True)
# Plot envelope
plt.subplot(5, 1, 4)
plt.plot(t, envelope)
plt.title('ADSR Envelope')
plt.grid(True)
# Plot final waveform with envelope
plt.subplot(5, 1, 5)
plt.plot(t[:display_samples], y[:display_samples])
plt.title('Final Waveform (With Envelope)')
plt.grid(True)
plt.tight_layout()
plt.show()
return Audio(y, rate=sr)
import numpy as np
import matplotlib.pyplot as plt
import librosa
from scipy.signal import savgol_filter, hilbert
from IPython.display import Audio, display
def analyze_synthetic_instrument(instrument_function, instrument_name, duration=3.0, sr=22050):
# Generate synthetic waveform
t = np.linspace(0, duration, int(sr * duration), endpoint=False)
y = instrument_function(t, sr)
# Plot the waveform
plt.figure(figsize=(12, 4))
plt.subplot(1, 3, 1)
librosa.display.waveshow(y, sr=sr)
plt.title(f'{instrument_name} Waveform')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
# Plot the spectrogram
plt.subplot(1, 3, 2)
D = librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max)
librosa.display.specshow(D, sr=sr, x_axis='time', y_axis='log')
plt.colorbar(format='%+2.0f dB')
plt.title(f'{instrument_name} Spectrogram')
# Plot the envelope with smoothing
plt.subplot(1, 3, 3)
envelope = np.abs(hilbert(y))
# Apply smoothing to the envelope
window_length = min(101, len(envelope) // 10)
if window_length % 2 == 0: # Window length must be odd
window_length += 1
smooth_envelope = savgol_filter(envelope, window_length, 3)
plt.plot(t, smooth_envelope)
plt.title(f'{instrument_name} Envelope (Smoothed)')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.tight_layout()
plt.show()
# Display audio player
# display(Audio(y, rate=sr))
def lumina_like(t, sr):
# Beautiful Lumina with natural decay characteristics
fundamental = 293.66 # D4 note
duration = len(t) / sr # Total duration in seconds
# Use consonant harmonic series
harmonic_series = [1, 2, 3, 5, 8, 13]
strengths = [1.0, 0.65, 0.4, 0.25, 0.12, 0.07]
# Create the base sound
y = np.zeros_like(t)
# Light vibrato
vibrato_rate = 4.5 # Hz
vibrato_depth = 1.8 # Hz - subtle
vibrato = vibrato_depth * np.sin(2 * np.pi * vibrato_rate * t)
# Generate each harmonic with its own decay rate
for i, (h, s) in enumerate(zip(harmonic_series, strengths)):
# Higher harmonics decay faster (physically accurate)
harmonic_decay_rate = 1.2 + (h * 0.5) # Scaling decay with harmonic number
# Two-phase decay (like many natural instruments)
initial_decay = np.exp(-harmonic_decay_rate * t)
# Blend initial and residual decay
harmonic_envelope = initial_decay
# Frequency with subtle vibrato
freq = fundamental * h + vibrato * (h/4)
phase = 2 * np.pi * np.cumsum(freq) / sr
# Add to the waveform
y += s * harmonic_envelope * np.sin(phase)
# Add subtle chorus for richness (single layer to keep it simple)
chorus_depth = 0.01
chorus_rate = 0.7 # Hz
chorus_mod = chorus_depth * np.sin(2 * np.pi * chorus_rate * t)
chorus_signal = np.zeros_like(t)
for h, s in zip(harmonic_series[:4], strengths[:4]): # Only use lower harmonics for chorus
freq = fundamental * h * (1 + chorus_mod)
phase = 2 * np.pi * np.cumsum(freq) / sr
# Apply faster decay to chorus layer
chorus_decay = np.exp(-(2.0 + h*0.5) * t)
chorus_signal += (s * 0.2) * chorus_decay * np.sin(phase)
y += chorus_signal
# Master envelope with natural attack and decay
envelope = np.ones_like(t)
attack_time = 0.05 # Much faster attack - 50ms
attack_samples = int(attack_time * sr)
if attack_samples > 0 and attack_samples < len(t):
envelope[:attack_samples] = np.power(np.linspace(0, 1, attack_samples), 0.7)
# Apply natural sounding decay
# Fast initial decay followed by longer tail (common in struck/plucked instruments)
decay_1 = np.exp(-3.0 * t) # Initial rapid decay
decay_2 = np.exp(-1.5 * t) # Slower residual decay
# Blend the two decay curves - more of decay_1 at the start, more of decay_2 for the tail
blend_factor = np.exp(-5.0 * t) # How quickly to transition from decay_1 to decay_2
master_decay = decay_1 * blend_factor + decay_2 * (1 - blend_factor)
# Final envelope
final_envelope = envelope * master_decay
# Subtle resonance to add warmth to the decay
resonance_freq = fundamental * 2.5 # A harmonically related resonance
resonance = 0.06 * np.sin(2 * np.pi * resonance_freq * t) * np.exp(-2.0 * t)
# Combine all elements
result = (y * final_envelope + resonance) / 1.2 # Prevent clipping
return result / np.max(np.abs(result))
# Create the instrument dictionary if it doesn't exist
instrument_functions = {}
# Add the beautiful Lumina to the instrument dictionary
instrument_functions["Lumina"] = lumina_like
# Define sample rate if not already defined
sample_rate = 22050
# Analyze the new instrument
print("## Analyzing the new instrument, called 'Lumina' ##")
analyze_synthetic_instrument(lumina_like, "Lumina", duration=2.0) # 3 seconds is enough to hear the decay
# Generate the Lumina sound for playback
t_lumina = np.linspace(0, 2.0, int(sample_rate * 2.0), endpoint=False)
lumina_sound = lumina_like(t_lumina, sample_rate)
# Play the Lumina sound
display(Audio(lumina_sound, rate=sample_rate))
def lumina_like(t, sr, fundamental=293.66): # Modified to accept fundamental frequency
# Beautiful Lumina with natural decay characteristics
duration = len(t) / sr # Total duration in seconds
# Use consonant harmonic series
harmonic_series = [1, 2, 3, 5, 8, 13]
strengths = [1.0, 0.65, 0.4, 0.25, 0.12, 0.07]
# Create the base sound
y = np.zeros_like(t)
# Light vibrato
vibrato_rate = 4.5 # Hz
vibrato_depth = 1.8 # Hz - subtle
vibrato = vibrato_depth * np.sin(2 * np.pi * vibrato_rate * t)
# Generate each harmonic with its own decay rate
for i, (h, s) in enumerate(zip(harmonic_series, strengths)):
# Higher harmonics decay faster (physically accurate)
harmonic_decay_rate = 1.2 + (h * 0.5) # Scaling decay with harmonic number
# Two-phase decay (like many natural instruments)
initial_decay = np.exp(-harmonic_decay_rate * t)
# Blend initial and residual decay
harmonic_envelope = initial_decay
# Frequency with subtle vibrato
freq = fundamental * h + vibrato * (h/4)
phase = 2 * np.pi * np.cumsum(freq) / sr
# Add to the waveform
y += s * harmonic_envelope * np.sin(phase)
# Add subtle chorus for richness (single layer to keep it simple)
chorus_depth = 0.01
chorus_rate = 0.7 # Hz
chorus_mod = chorus_depth * np.sin(2 * np.pi * chorus_rate * t)
chorus_signal = np.zeros_like(t)
for h, s in zip(harmonic_series[:4], strengths[:4]): # Only use lower harmonics for chorus
freq = fundamental * h * (1 + chorus_mod)
phase = 2 * np.pi * np.cumsum(freq) / sr
# Apply faster decay to chorus layer
chorus_decay = np.exp(-(2.0 + h*0.5) * t)
chorus_signal += (s * 0.2) * chorus_decay * np.sin(phase)
y += chorus_signal
# Master envelope with natural attack and decay
envelope = np.ones_like(t)
attack_time = 0.05 # Much faster attack - 50ms
attack_samples = int(attack_time * sr)
if attack_samples > 0 and attack_samples < len(t):
envelope[:attack_samples] = np.power(np.linspace(0, 1, attack_samples), 0.7)
# Apply natural sounding decay
# Fast initial decay followed by longer tail (common in struck/plucked instruments)
decay_1 = np.exp(-3.0 * t) # Initial rapid decay
decay_2 = np.exp(-1.5 * t) # Slower residual decay
# Blend the two decay curves - more of decay_1 at the start, more of decay_2 for the tail
blend_factor = np.exp(-5.0 * t) # How quickly to transition from decay_1 to decay_2
master_decay = decay_1 * blend_factor + decay_2 * (1 - blend_factor)
# Final envelope
final_envelope = envelope * master_decay
# Subtle resonance to add warmth to the decay
resonance_freq = fundamental * 2.5 # A harmonically related resonance
resonance = 0.06 * np.sin(2 * np.pi * resonance_freq * t) * np.exp(-2.0 * t)
# Combine all elements
result = (y * final_envelope + resonance) / 1.2 # Prevent clipping
return result / np.max(np.abs(result))
# Add the beautiful Lumina to the instrument dictionary
instrument_functions["Lumina"] = lumina_like
# Analyze the new instrument
print("## Lumina with Natural Decay ##")
# analyze_synthetic_instrument(lumina_like, "Lumina", duration=2.0) # 3 seconds is enough to hear the decay
# Generate the Lumina sound for playback
t_lumina = np.linspace(0, 2.0, int(sample_rate * 2.0), endpoint=False)
lumina_sound = lumina_like(t_lumina, sample_rate)
# Play the Lumina sound
# display(Audio(lumina_sound, rate=sample_rate))
# Create a keyboard interface to play the Lumina instrument
from IPython.display import display, HTML
import ipywidgets as widgets
from IPython.display import clear_output
# Define note frequencies for a C major scale
note_frequencies = {
'a': 261.63, # C4
's': 293.66, # D4
'd': 329.63, # E4
'f': 349.23, # F4
'g': 392.00, # G4
'h': 440.00, # A4
'j': 493.88, # B4
'k': 523.25, # C5
'l': 587.33 # D5
}
# Create a short duration for each note
note_duration = 1.0 # seconds
t_note = np.linspace(0, note_duration, int(sample_rate * note_duration), endpoint=False)
# Pre-generate audio for each note
note_sounds = {}
for key, freq in note_frequencies.items():
note_sounds[key] = lumina_like(t_note, sample_rate, fundamental=freq)
# Create a text widget to capture keyboard input
text_widget = widgets.Text(
value='',
placeholder='Click here and press a, s, d, f, g, h, j, k, l to play notes',
description='Play:',
layout=widgets.Layout(width='500px')
)
# Create an output widget to display the played note
output_widget = widgets.Output()
# Function to handle keyboard input
def handle_key(change):
key = change['new']
if key and key[-1] in note_frequencies:
pressed_key = key[-1]
# Clear previous output to stop any currently playing audio
output_widget.clear_output(wait=True)
# Play the note for the specific key pressed
with output_widget:
# Generate a unique ID for this audio element
audio_id = f"audio_{pressed_key}_{np.random.randint(10000)}"
# Store the key and frequency for debugging
note_name = f"{pressed_key.upper()} ({note_frequencies[pressed_key]} Hz)"
print(f"Playing: {note_name}")
# Display the audio with the correct frequency for this key
display(Audio(note_sounds[pressed_key], rate=sample_rate, autoplay=True, element_id=audio_id))
# Force interrupt any currently playing audio and play the new note
display(HTML(f"""
<script>
// Stop all currently playing audio elements
document.querySelectorAll('audio').forEach(function(audio) {{
audio.pause();
audio.currentTime = 0;
}});
// Make sure the latest audio plays
var latestAudio = document.getElementById('{audio_id}');
if (latestAudio) {{
latestAudio.play();
}}
</script>
"""))
# Clear the input for the next key press
text_widget.value = ''
# Connect the handler to the text widget
text_widget.observe(handle_key, names='value')
# Display the interface
print("Keyboard Piano - Press keys a, s, d, f, g, h, j, k, l to play notes")
display(text_widget)
display(output_widget)
# Display a visual keyboard guide
keyboard_guide = """
<div style="font-family: monospace; font-size: 16px; margin: 20px;">
<div style="display: flex; justify-content: center;">
<div style="border: 1px solid black; padding: 10px; margin: 5px; width: 40px; text-align: center; background-color: #f0f0f0;">A<br>C4</div>
<div style="border: 1px solid black; padding: 10px; margin: 5px; width: 40px; text-align: center; background-color: #f0f0f0;">S<br>D4</div>
<div style="border: 1px solid black; padding: 10px; margin: 5px; width: 40px; text-align: center; background-color: #f0f0f0;">D<br>E4</div>
<div style="border: 1px solid black; padding: 10px; margin: 5px; width: 40px; text-align: center; background-color: #f0f0f0;">F<br>F4</div>
<div style="border: 1px solid black; padding: 10px; margin: 5px; width: 40px; text-align: center; background-color: #f0f0f0;">G<br>G4</div>
<div style="border: 1px solid black; padding: 10px; margin: 5px; width: 40px; text-align: center; background-color: #f0f0f0;">H<br>A4</div>
<div style="border: 1px solid black; padding: 10px; margin: 5px; width: 40px; text-align: center; background-color: #f0f0f0;">J<br>B4</div>
<div style="border: 1px solid black; padding: 10px; margin: 5px; width: 40px; text-align: center; background-color: #f0f0f0;">K<br>C5</div>
<div style="border: 1px solid black; padding: 10px; margin: 5px; width: 40px; text-align: center; background-color: #f0f0f0;">L<br>D5</div>
</div>
</div>
"""
display(HTML(keyboard_guide))